Abstract technology internet system of connection

LitePoint Testing Solutions and UWB Modulation Techniques

Published: 9th March 2021

LitePoint IQgig-UWB Validates and Calibrates UWB Devices

LitePoint are focused on calibration and making sure that the first device off the line works very much like the millionth device off the line. The IQgig-UWB is a fully integrated test solution for calibrating and validating UWB devices, both on the transmitter side and on the receiver side. The test solution covers a frequency range from 5 GHz to 19 GHz, with a 2 GHz single-shot bandwidth.

So, whether the UWB signal is transmitting at 500 MHz or some future UWB signal transmits at 1 GHz, or maybe 1.2 GHz or 1.3 GHz, this instrument has the forward-looking capability to address that.

What’s unique about the IQgig-UWB is that it can make some of the measurements that are specific to UWB. First is measuring distance to determine time-of-flight (ToF). The test system has a precision trigger and response mechanism, where the instrument can receive a polling request and deliver a response in less than 20 microseconds, with picosecond level jitter. So again, the timing of UWB is the key parameter. It’s not necessarily the demodulation accuracy. We’re really concerned about timing.

UWB is transmitted in very low signal power. And so, the sensitivity of the receivers is very low. The instrument has an ability to generate signals very accurately below -100 dBm. So it’s very low power, very accurate timing. And that’s really what LitePoint are mostly concerned about in UWB testing.

This is a screenshot of the graphical user interface in the product. Here you can see some of the measurements that are happening on the upper right portion of the screen.

The upper left is the time domain. You can see these are a series of short pulses, and you can see that the timescale is on microseconds. The LitePoint instrument is looking at bursts of pulses that are significantly less than a microsecond. And the types of measurements that the test system is looking at are mostly in frequency and in timing. There is chip clocking error, frequency error and then power measurements.

In the bottom left drawing is what is called the eye diagram, which is really trying to overlay the reference pulse’s jitter. If there’s a lot of jitter, you’ll see that as being a very fuzzy signal. And if there’s a little jitter, which is the key measurement for the timing accuracy required for UWB, you’ll see those almost lay right on top of each other.

And lastly is a power mask in the bottom right.

This is a comprehensive list of the type of measurements the IQgig-UWB is making. One to note is symbol modulation accuracy. In Wi-Fi or 5G or some other OFDM type of technology, the key spec in those technologies is error vector magnitude (EVM). In UWB there’s no direct correlation to how accurately the signal is modulated. But what is compared in UWB is the reference signal versus the measured signal in a correlation function. A correlation of 100 percent would be a perfectly transmitted signal. And then as the signal is distorted, the correlation gets worse. And so that 100 percent goes down. With a correlation factor of 90 percent, there’s some distortion in that signal. As engineers characterize their devices, they can use this capability to put some sort of qualitative metric around modulation accuracy. But again, that’s not really the key spec that is part of UWB. UWB is much more focused on frequency errors, chip clock errors and the jitter in the pulses, as well as things like time-of-flight (ToF) and angle of arrival (AoA).

IQ5631 Power and Delay Control Module

In order to provide some of the advanced capabilities for UWB from a calibration measurement point of view, LitePoint offers an additional accessory product called the IQ5631 Power and Delay Control Module (PDCM). It enables very low RX sensitivity measurements. The industry is seeing a variety of reference designs developed by chipset vendors for their customers. These come with support for a single antenna device as well as multi-antenna devices. This product enables the ability to test multi antenna devices. Additionally, this product has an integrated ability to control the delay between the different signals, so it allows the ability to do angle of arrival (AoA) testing.

Total Solutions for Design Validation and Production

LitePoint is helping to make the complexity of testing UWB devices simple through automated test solutions. IQfact+ delivers pre-configured software that is designed for leading UWB chip designs. LitePoint also has a data visualization tool called IQramp. With IQramp, the IQfact+ collects data and then the user can drag and drop those files into IQramp to do data visualization as part of the characterization of the product. When the user is dialed in and ready to go, they can move the IQfact+ into manufacturing, enabling a seamless transition from product development to production.

Work with FiRa Consortium

The FiRa Consortium was developed in 2019 as a member-driven organization focused on the secure fine-ranging and positioning capabilities of UWB technologies. LitePoint was the first test vendor to join the consortium. LitePoint joined the FiRa Consortium to help create and roll out a certification program for UWB devices. This upcoming certification program will ensure that UWB devices are interoperable and can harmonize the way testing will be done for different UWB use cases.

MCS Test are the approved UK partner for LitePoint
Content Source: UWB Modulation Techniques | LitePoint


LitePoint IQgig-UWB Ultra Wide Band Test System

Ultra Wide Band Test System

IQgig-UWB™ is the industry’s first fully-integrated, one-box test solution for physical-layer testing of devices enabled with Ultra Wide Band (UWB) technology.

Find out more about LitePoint IQgig-UWB Ultra Wide Band Test System

You Might also like

LitePoint Releases First Fully-Integrated 5G Millimeter Wave Test System

Small Cells Play Key Role in 5G Networks

With the availability of new mid-band spectrum, mobile network operators (MNOs) are setting up stand-alone 5G networks and exploring the unique use cases the technology offers. New applications that use the benefits of 5G are appearing as well including autonomous driving systems, smart imaging medical systems, and other new applications that demonstrate the value of 5G networks that offer wide coverage, high bandwidth, and low latency.

Read more
Lite Point Wi Fi 7 Blog

Wi-Fi 7: Wi-Fi’s Plaid Mode

With the 802.11be standard (a.k.a Wi-Fi 7), Wi-Fi has gone to plaid! As hinted at by its name, the IEEE 802.11be EHT “Extremely High Throughput” standard is primarily aiming to provide super-fast data rates for the next generation Wi-Fi 7 devices.

Read more
Abstract Blue and Gold Net

Webinar on State of Wi-Fi 6/6E Details Changes to Next-Generation Wireless LANs

Wi-Fi 6/6E is a significant evolution of the Wi-Fi standard that boosts throughput and reduces latency to make it better for high-capacity applications as well as for emerging applications such as AR/VR, ultra-high definition video streaming, 5G offload and others.

Read more

Sign up for the MCS Newsletter

You will receive all the latest test & measurement news and rental offers.