Tektronix TPS2024B 200 MHz Digital Storage Oscilloscope
Analog Bandwidth: 200 MHz
Analog Channels: 4
The TPS2024B offers a distinctive range of capabilities in an oscilloscope with controls and menus you will find familiar and easy to use.
Most consumer products include electronic circuits or components, and an oscilloscope is used throughout the product design process to test those components. But what is an oscilloscope? And what does an oscilloscope measure?
An oscilloscope is an instrument that graphically displays electrical signals and shows how those signals change over time. Engineers use oscilloscopes to measure electrical phenomena and quickly test, verify, and debug their circuit designs. The primary function of an oscilloscope is to measure voltage waves. Those waves are displayed on a graph that can tell you many things about a signal, such as:
At a very basic level, the graph displayed on an oscilloscope shows how the signal changes over time with voltage displayed vertically on the Y axis and time represented horizontally on the X axis.
The intensity or brightness of the signal on the scope’s display is sometimes called the Z-axis. On Digital Phosphor Oscilloscopes (DPO), the Z-axis can be represented by color grading of the display.
While oscilloscopes are primarily designed to measure volts, they can detect and measure a variety of other signals, including:
There are a few ways to use an oscilloscope to measure current; one would be to measure the voltage dropped across a shunt resistor. The other is to simply use a current probe.
It is possible to measure sound through an oscilloscope. You would need a transducer (to ‘convert’ the audio signal to a voltage), which you then connect to a channel on the scope. You’ll then display the signal as a corresponding voltage vs. time.
While an oscilloscope won’t give a direct measure of capacitance, it can be used to measure a time constant in order to find the actual capacitance of an electrical system or component with an Arbitrary Function Generator.
Most modern oscilloscopes provide the option to measure DC voltage automatically. However you can measure it manually by ‘counting’ the vertical reticules and multiplying by the volts per division.
Much like with DC voltage, most modern oscilloscopes measure frequency automatically. However, it is possible to calculate the frequency manually by calculating the period of the signal (using cursors or the horizontal reticules) and dividing 1 by the period giving you the frequency.
If you don’t have an LCR meter, you can measure inductance with an oscilloscope and a function generator. This will be a simple measurement with a 3 to 5% uncertainty value.
MCS Test are the approved UK partner for Tektronix
Content Source: What does an oscilloscope measure? | Tektronix
Analog Bandwidth: 200 MHz
Analog Channels: 4
The TPS2024B offers a distinctive range of capabilities in an oscilloscope with controls and menus you will find familiar and easy to use.
Analog Bandwidth: 100 MHz
Analog Channels: 2
The TPS2012B offers a distinctive range of capabilities in an oscilloscope with controls and menus you will find familiar and easy to use.
Frequency Range: 70 MHz
Analog Channels: 2
The TBS1072C Digital Storage Oscilloscope offers affordable performance in a compact design.
4 Channel, 300 MHz Frequency Range
The TDS3034C Oscilloscope Series provides you with the performance to visualize fast-changing signals in a compact, battery-capable design.
Analog Bandwidth: 500 MHz
Analog Channels: 4
The MDO3054 Mixed Domain Oscilloscope features up to six integrated instruments, including options like a spectrum analyser, function generator, and more, giving you the ability to capture analog, digital, and RF signals with one scope.