Energy & Power

Why IoT Battery Life Does Not Meet Expectations and How To Fix

Published: 14th January 2022

Battery life can contribute significantly to the cost and reliability of Internet of Things (IoT) infrastructure. While for consumer electronic devices, battery life is often a critical purchase consideration. Therefore, the fact that the calculated battery life of IoT devices is often inaccurate is a significant issue for manufacturers.

One method to measure battery life is to divide the battery capacity in amp-hours by the average current drain in amps which gives you a time in hours. However, in the real world, this calculation is overly simplistic.

This formula can generate inaccurate results because devices use different power modes, including active, sleep, and hibernate. Additionally, operating modes such as constant power and constant resistance will draw current from the battery differently and change the battery lifetime. It is essential to fully understand how a battery responds to these different scenarios and the typical usage patterns of the device to predict battery life accurately.

In addition to varying current drain, battery capacity is variable, depending on the average discharge current and usage patterns. You can see in Figure 1 that there is a considerable variation in discharge capacity based on the discharge current level for an alkaline cell.

Figure 1. 1,100 mAh alkaline cell, 0.9V cutoff voltage - discharge capacity variation

Furthermore, temperature can affect battery life, so it is critical to consider this. Figure 2 shows how temperature can affect the capacity curves of a battery.

Figure 2. 1,000 mAh Li-ion cell, 3 V cutoff voltage – temperature variation

The following are additional factors that can lead to a longer computed battery runtime as compared to real-world usage:

• Battery model / profile is not available to the engineer.
• Battery profiles are not generated with accurate device operating conditions.
• Current consumption measurements are not accurate.
• Voltage drops such as a device shutting down when the voltage reaches a cutoff range are not considered.

A solution to accurately predict real-world battery life is the use of battery emulation and profiling software. Battery emulation software has the capabilities to do the following:

• Profile batteries through charging/discharging to create unique battery models.
• Emulate charge states to reduce test time, improve safety, and gain insight to extend battery life.
• Visually track charging/discharging batteries to determine capacity.
• Cycle batteries to determine loss of capacity and reduction of battery life.

Keysight’s Batteries and Power Management Webinar provides more detailed information on the capabilities of battery emulation software, including a demonstration of BV9210B PathWave BenchVue Advanced Battery Test And Emulation Software. The whitepaper Measuring IoT Battery Life with Test Software and Hardware also discusses options for measuring battery life, including utilizing battery emulation software.

MCS Test are an approved UK partner for Keysight
Content Source: Why IoT Battery Life Does Not Meet Expectations and How To Fix | Keysight Blogs

You Might also like

Generate Diode Curves with Excel and a Bench Power Supply

Generate Diode Curves with Excel and a Bench Power Supply

When you need to quickly determine the forward voltage of a power diode, use your bench power supply. A bench power supply with an accurate measurement system, such as the Keysight EDU36311A Smart Bench Essentials DC power supply..

Read more
Create Arbitrary Waveform for Use in a Function Generator

Create Arbitrary Waveform for Use in a Function Generator

Advances in software, microprocessors, and display technology have expanded the capabilities of modern function generators. The latest models can produce a variety of signals, including common waveforms, arbitrary waveforms, and sophisticated modulated waveforms.

Read more
Troubleshooting with Your Bench Test Instruments

Troubleshooting with Your Bench Test Instruments

Analyzing a component failure can be quite tedious and there are many types of components on a PCBA. For example, there are discrete components such as electrolytic capacitors, ceramic capacitors, tantalum capacitors, diodes, inductors, crystal oscillators, microcontrollers, power driver integrating circuits (IC), protocol interface ICs, and more...

Read more

Sign up for the MCS Newsletter

You will receive all the latest test & measurement news and rental offers.